Oil and Gas Books

1 - Fundamentals of Oil and Gas Processing Book

2- Basics of Gas Field Processing Book

3- Prediction and Inhibition of Gas Hydrates Book

4 - Basics of Corrosion in Oil and Gas Industry Book

 

https://www.amazon.com/Yasser-Kassem/e/B07KXLM5RZ%3Fref=dbs_a_mng_rwt_scns_share

 

Discussion board
And Book texts.

http://www.oilprocessing.net/oil/

 

Fundamentals of Oil and Gas Processing book contents

Contents

Chapter 1        10

Basics of Oil and Gas Treatment        10

1.1 Introduction          10

1.2 Hydrocarbon preparation 10

1.3: Physical properties of Hydrocarbon Gases          11

1.3.1: Hydrocarbon gases       11

1.3.2: Molecular weight and apparent molecular weight     11

1.3.3: Apparent molecular weight of gas mixture     12

1.3.4: Gas Specific Gravity and Density          13

1.3.6: Compressibility Factor (z)         14

1.3.7: Gas density at any condition of Pressure and temperature     18

1.3.8: Gas volume at any condition of Pressure and temperature    19

1.3.9: Velocity of gas, (ft/s)    20

1.3.10: Average pipeline pressure      21

1.3.11: Viscosity of gases        22

1.3.12: The heating value of gases     22

1.4: properties of Hydrocarbon Liquids (Crude Oil)   23

1.4.1: Introduction      23

1.4.2: Crude oil Density and gravity   24

1.4.3: Crude oil Viscosity.       25

1.4.4: Oil-Water Mixture Viscosity     25

1.5: Phase Behavior    27

1.5.1: Introduction      27

1.5.2 System Components      27

1.5.3: Single-Component Systems      28

1.5.4: Multicomponent Systems         31

1.5.5: Prediction of phase envelope   32

1.6: Types of Fluid Flow          42

1.6.1: Reynolds Number         42

Chapter 2        43

Two-phase Oil and Gas Separation    43

2.1 Introduction          43

2.2 Phase Equilibrium 43

2.3: Separation process:         43

2.4: Principles of Physical Separation:            44

2.5: Gravity Separation:          44

2.6: Factors Affecting Separation       46

2.7: Separator categories and nomenclature:           47

2.8: Functional Sections of a Gas-Liquid Separator    47

2.8.1: Inlet Diverter Section    48

2.8.2: Liquid Collection Section          48

2.8.3: Gravity Settling Section 48

2.8.4: Mist Extractor Section  49

2.9: Separator Configurations 49

2.10: Types of Separators       50

2.10.1: Vertical Separators     50

2.10.2: Horizontal Separators 52

2.10.3: Double-Barrel Horizontal Separators 53

2.10.4: Horizontal Separator with a “Boot” or “Water Pot”  54

2.10.5: Filter Separators         54

2.10.6: Scrubbers        56

2.10.7: Slug Catchers  56

2.11: Selection Considerations           57

2.12: Internal Vessel Components      59

2.12.1: Inlet Diverters 59

2.12.2: Wave Breakers           62

2.12.3: Defoaming Plates       62

2.12.4: Vortex Breaker           63

2.12.5: Stilling Well     64

2.12.6: Sand Jets and Drains   64

2.12.7: Mist Extractors           65

2.13: Control Components of Gas–Oil Separators     76

2.14.1: Foamy Crude   77

2.14.2: Paraffin           78

2.14.3: Sand    78

2.14.4: Gas Blowby     78

2.14.5: Liquid Carryover         79

2.14.6: Liquid Slugs     79

2.15: Stage Separation            80

2.15.1: Initial Separation Pressure     80

2.15.2: Stage Separation         81

2.15.3: Selection of Stages      83

2.15.4: Fields with Different Flowing Tubing Pressures         83

2.15.5: Determining Separator Operating Pressures 84

2.15.6: Two-Phase vs. Three-Phase Separators          85

2.16: Separator calculation basics.     85

2.16.1: Liquid Handling and Liquid Retention Time   85

2.16.2: Gas retention time      86

2.16.3: Gas velocity     86

2.16.4: Liquid Re-entrainment            87

2.16.5: Droplet Size  (Liquid in gas phase)     88

2.17: Design Principles and sizing of Oil-gas Separator         88

2.17.1: First method Design Theory   89

2.17.1.12: Slenderness Ratio  95

2.17.2: Second method Design Theory           100

Chapter 3        107

Three-phase Oil and Gas Separation  107

3.1: Introduction         107

3.2: three phase separation equipment’s       108

3.2.1: Horizontal Separators   108

3.2.2: Free-Water Knockout    111

3.2.3: Horizontal Three-Phase Separator with a Liquid “Boot”         111

3.2.4: Vertical Separators       112

3.2.5: Selection Considerations          114

3.3: Internal Vessel components        115

3.3.1: Coalescing Plates          117

3.4: Operating Problems        118

3.4.1: Emulsions          118

3.5: Three-Phase Separator Design Theory    118

3.5.1: Gas Separation  118

3.5.2: Oil–Water Settling        118

3.5.3: Water Droplet Size in Oil          118

3.5.4: Oil Droplet Size in Water          119

3.5.5: Retention Time 119

3.6: Separator Design (first method)  121

3.6.1: Horizontal Three-phase Separator Sizing—Half-Full   121

3.6.1.2: Retention Time Constraint    121

3.6.1.3: Settling Water Droplets from Oil Phase        122

3.6.1.4: Separating Oil Droplets from Water Phase  123

3.6.2: Vertical Separators’ Sizing        124

3.6.2.1: Gas Capacity Constraint        125

3.6.2.3: Settling Oil from Water Phase Constraint     125

3.7: Separator Design (second method)         131

Chapter 4        134

Crude oil dehydration 134

4.1: Introduction         134

4.2: Emulsion  134

4.2.1 Energy of Agitation        135

4.2.2 Emulsifying Agents        136

4.2.3: Stability of oil water emulsion  137

4.2.4: Emulsion Treating Theory        139

4.2.5: Demulsifiers      140

4.3: Crude oil treating systems           143

4.3.1: Free-Water Knockouts  143

4.3.2: Gunbarrel tanks with internal and external gas boots 144

4.3.3: Heaters 146

4.4: Emulsion Treating Methods        164

4.4.1: General Considerations            164

4.4.2: Chemical Addition        165

4.5: Heat Required      174

4.5.1: Heat duty          174

4.5.2: Heat Loss           174

4.5.3: Fire Tube Heat Flux       175

4.5.4: Firetube Heat Density   175

4.6: Treater Equipment Sizing            175

4.6.2: Design Procedure         178

4.7: Practical Considerations  184

4.7.1: Gunbarrels with Internal/External Gas Boot    184

4.7.2: Heater-Treaters            184

4.7.3: Electrostatic Heater-Treaters   184

Chapter 5        185

Crude Oil Desalting    185

5.1: Introduction         185

5.1.1: Salt Content      185

5.1.2: Desalting Process          186

5.2: Equipment Description    186

5.2.1: Desalters           186

5.2.2: Mixing Equipment        186

5.3: Process Description         188

5.3.1: Single-Stage Desalting  189

5.3.2: Two-Stage Desalting     189

5.4: Electrostatic Desalting Voltage   189

5.5: Operating Parameters Effects     191

5.6: Design Consideration       191

5.7: Troubleshooting   192

Chapter 6        193

Crude Oil Stabilization and Sweetening         193

6.1: Introduction         193

6-1-1: Crude oil treatment steps        193

6.2: Process Schemes  194

6.2.1: Multi-Stage Separation 194

6.2.2: Oil Heater-Treaters      194

6.2.3: Liquid Hydrocarbon Stabilizer  195

6.2.4: Cold-Feed Stabilizer      197

6.2.5: Stabilizer with Reflux    197

6.3: Stabilization Equipment   199

6.3.1: Stabilizer Tower            199

6.4: Stabilizer Design  205

6.5: Crude Oil Sweetening      206

6.6.1: Stage vaporization with stripping gas. 206

6.6.2: Trayed stabilization with stripping gas.            207

6.6.3: Reboiled trayed stabilization.   208

Chapter 7        209

Fluid Measurements   209

7.1: Gas Measurement           209

7.1.1: Orifice-Meter Measurement   209

7.1.1.5: Meter Tubes  213

7.1.2: Ultrasonic Measurement          220

7.2: Liquid Measurements      221

7.2.1: Volumetric Measurement Meters (Orifice Meters)    221

7.2.2: Turbine Meters 223

7.2.3: Positive Displacement Meters  224

7.2.4: Turbine and Positive Displacement Meter Selection   224

7.2.5: Mass Measurement Meters     225

Chapter 8        228

Instrumentation and Control  228

8.1: Introduction         228

8.2: Type Selection and Identification            228

8.2.1: Pneumatic Power Supplies       228

8.2.2: Electronic Power Supplies        229

8.3: Sensing Devices   230

8.3.1: Pressure Sensors           230

8.3.1.3: Bellows (Fig. 8-3)       230

8.3.2: Level Sensors    232

8.3.3: Temperature Sensors   237

8.3.4: Flow Sensors     239

8.4: Signal Transmitters          241

8.4.1: Pneumatic Transmitters           241

8.4.2: Electronic Transmitters            241

8.5: Signal Converters 241

8.5.1: Pneumatic-to-electronic (P/I)   242

8.5.2: Electronic-to-pneumatic (I/P)   242

8.5.3: Isolators 242

8.5.4: Electric signal converters         242

8.5.5: Frequency converters   242

8.6: Recorders and Indicators 242

8.6.1: Recorders          242

8.6.2: Indicators          242

8.7: Control Concepts 243

8.7.1: Control Loops    243

8.8: Control Modes and Controllers   245

8.8.1: Two-Position (on-off) Controllers         245

8.8.2: Proportional Control Mode      245

8.9: Control Valves      246

8.9.1: Control-Valve Bodies    247

8.9.2: Control-Valve Actuators           248

8.9.3: Flow Characteristics and Valve Selection         249

8.9.4: Fundamentals of Control Valve Sizing  250

Chapter 9        256

Process Relief Systems           256

9.1: Introduction         256

9.2: Relief Device Design and Requirements:            256

9.2.1: Blocked Discharge        257

9.2.2: Fire Exposure    257

9.2.3: Tube Rupture    257

9.2.4: Control Valve Failure    257

9.2.5: Thermal Expansion       257

9.2.6: Utility Failure    257

9.3: General discussion           258

9.4: Special Relief System Considerations      260

9.4.1: Pumps and storage equipment 260

9.4.2: Low Temperature Flaring         260

9.5: Relieving Devices 260

9.5.1: Conventional Relief Valves       260

9.5.2: Balanced Relief Valves 262

9.5.3: Pilot Operated Relief Valves    262

9.5.4: Resilient Seat Relief Valves      264

9.5.5: Rupture Disk     265

References.     267

 

 

----------------------
Basics of Gas Field Processing book contents

Contents

Chapter 1        10

Basics of Oil and Gas Treatment        10

1.1 Introduction          10

1.2 Hydrocarbon preparation 10

1.3: Physical properties of Hydrocarbon Gases          11

1.3.1: Hydrocarbon gases       11

1.3.2: Molecular weight and apparent molecular weight     11

1.3.3: Apparent molecular weight of gas mixture     12

1.3.4: Gas Specific Gravity and Density          13

1.3.6: Compressibility Factor (z)         14

1.3.7: Gas density at any condition of Pressure and temperature     18

1.3.8: Gas volume at any condition of Pressure and temperature    19

1.3.9: Velocity of gas, (ft/s)    20

1.3.10: Average pipeline pressure      21

1.3.11: Viscosity of gases        22

1.3.12: The heating value of gases     22

1.4: properties of Hydrocarbon Liquids (Crude Oil)   23

1.4.1: Introduction      23

1.4.2: Crude oil Density and gravity   24

1.4.3: Crude oil Viscosity.       25

1.4.4: Oil-Water Mixture Viscosity     25

1.5: Phase Behavior    27

1.5.1: Introduction      27

1.5.2 System Components      27

1.5.3: Single-Component Systems      28

1.5.4: Multicomponent Systems         31

1.5.5: Prediction of phase envelope   32

1.6: Types of Fluid Flow          42

1.6.1: Reynolds Number         42

Chapter 2        43

Two-phase Oil and Gas Separation    43

2.1 Introduction          43

2.2 Phase Equilibrium 43

2.3: Separation process:         43

2.4: Principles of Physical Separation:            44

2.5: Gravity Separation:          44

2.6: Factors Affecting Separation       46

2.7: Separator categories and nomenclature:           47

2.8: Functional Sections of a Gas-Liquid Separator    47

2.8.1: Inlet Diverter Section    48

2.8.2: Liquid Collection Section          48

2.8.3: Gravity Settling Section 48

2.8.4: Mist Extractor Section  49

2.9: Separator Configurations 49

2.10: Types of Separators       50

2.10.1: Vertical Separators     50

2.10.2: Horizontal Separators 52

2.10.3: Double-Barrel Horizontal Separators 53

2.10.4: Horizontal Separator with a “Boot” or “Water Pot”  54

2.10.5: Filter Separators         54

2.10.6: Scrubbers        56

2.10.7: Slug Catchers  56

2.11: Selection Considerations           57

2.12: Internal Vessel Components      59

2.12.1: Inlet Diverters 59

2.12.2: Wave Breakers           62

2.12.3: Defoaming Plates       62

2.12.4: Vortex Breaker           63

2.12.5: Stilling Well     64

2.12.6: Sand Jets and Drains   64

2.12.7: Mist Extractors           65

2.13: Control Components of Gas–Oil Separators     76

2.14.1: Foamy Crude   77

2.14.2: Paraffin           78

2.14.3: Sand    78

2.14.4: Gas Blowby     78

2.14.5: Liquid Carryover         79

2.14.6: Liquid Slugs     79

2.15: Stage Separation            80

2.15.1: Initial Separation Pressure     80

2.15.2: Stage Separation         81

2.15.3: Selection of Stages      83

2.15.4: Fields with Different Flowing Tubing Pressures         83

2.15.5: Determining Separator Operating Pressures 84

2.15.6: Two-Phase vs. Three-Phase Separators          85

2.16: Separator calculation basics.     85

2.16.1: Liquid Handling and Liquid Retention Time   85

2.16.2: Gas retention time      86

2.16.3: Gas velocity     86

2.16.4: Liquid Re-entrainment            87

2.16.5: Droplet Size  (Liquid in gas phase)     88

2.17: Design Principles and sizing of Oil-gas Separator         88

2.17.1: First method Design Theory   89

2.17.1.12: Slenderness Ratio  95

2.17.2: Second method Design Theory           100

Chapter 3        107

Three-phase Oil and Gas Separation  107

3.1: Introduction         107

3.2: three phase separation equipment’s       108

3.2.1: Horizontal Separators   108

3.2.2: Free-Water Knockout    111

3.2.3: Horizontal Three-Phase Separator with a Liquid “Boot”         111

3.2.4: Vertical Separators       112

3.2.5: Selection Considerations          114

3.3: Internal Vessel components        115

3.3.1: Coalescing Plates          117

3.4: Operating Problems        118

3.4.1: Emulsions          118

3.5: Three-Phase Separator Design Theory    118

3.5.1: Gas Separation  118

3.5.2: Oil–Water Settling        118

3.5.3: Water Droplet Size in Oil          118

3.5.4: Oil Droplet Size in Water          119

3.5.5: Retention Time 119

3.6: Separator Design (first method)  121

3.6.1: Horizontal Three-phase Separator Sizing—Half-Full   121

3.6.1.2: Retention Time Constraint    121

3.6.1.3: Settling Water Droplets from Oil Phase        122

3.6.1.4: Separating Oil Droplets from Water Phase  123

3.6.2: Vertical Separators’ Sizing        124

3.6.2.1: Gas Capacity Constraint        125

3.6.2.3: Settling Oil from Water Phase Constraint     125

3.7: Separator Design (second method)         131

Chapter 4        134

Crude oil dehydration 134

4.1: Introduction         134

4.2: Emulsion  134

4.2.1 Energy of Agitation        135

4.2.2 Emulsifying Agents        136

4.2.3: Stability of oil water emulsion  137

4.2.4: Emulsion Treating Theory        139

4.2.5: Demulsifiers      140

4.3: Crude oil treating systems           143

4.3.1: Free-Water Knockouts  143

4.3.2: Gunbarrel tanks with internal and external gas boots 144

4.3.3: Heaters 146

4.4: Emulsion Treating Methods        164

4.4.1: General Considerations            164

4.4.2: Chemical Addition        165

4.5: Heat Required      174

4.5.1: Heat duty          174

4.5.2: Heat Loss           174

4.5.3: Fire Tube Heat Flux       175

4.5.4: Firetube Heat Density   175

4.6: Treater Equipment Sizing            175

4.6.2: Design Procedure         178

4.7: Practical Considerations  184

4.7.1: Gunbarrels with Internal/External Gas Boot    184

4.7.2: Heater-Treaters            184

4.7.3: Electrostatic Heater-Treaters   184

Chapter 5        185

Crude Oil Desalting    185

5.1: Introduction         185

5.1.1: Salt Content      185

5.1.2: Desalting Process          186

5.2: Equipment Description    186

5.2.1: Desalters           186

5.2.2: Mixing Equipment        186

5.3: Process Description         188

5.3.1: Single-Stage Desalting  189

5.3.2: Two-Stage Desalting     189

5.4: Electrostatic Desalting Voltage   189

5.5: Operating Parameters Effects     191

5.6: Design Consideration       191

5.7: Troubleshooting   192

Chapter 6        193

Crude Oil Stabilization and Sweetening         193

6.1: Introduction         193

6-1-1: Crude oil treatment steps        193

6.2: Process Schemes  194

6.2.1: Multi-Stage Separation 194

6.2.2: Oil Heater-Treaters      194

6.2.3: Liquid Hydrocarbon Stabilizer  195

6.2.4: Cold-Feed Stabilizer      197

6.2.5: Stabilizer with Reflux    197

6.3: Stabilization Equipment   199

6.3.1: Stabilizer Tower            199

6.4: Stabilizer Design  205

6.5: Crude Oil Sweetening      206

6.6.1: Stage vaporization with stripping gas. 206

6.6.2: Trayed stabilization with stripping gas.            207

6.6.3: Reboiled trayed stabilization.   208

Chapter 7        209

Fluid Measurements   209

7.1: Gas Measurement           209

7.1.1: Orifice-Meter Measurement   209

7.1.1.5: Meter Tubes  213

7.1.2: Ultrasonic Measurement          220

7.2: Liquid Measurements      221

7.2.1: Volumetric Measurement Meters (Orifice Meters)    221

7.2.2: Turbine Meters 223

7.2.3: Positive Displacement Meters  224

7.2.4: Turbine and Positive Displacement Meter Selection   224

7.2.5: Mass Measurement Meters     225

Chapter 8        228

Instrumentation and Control  228

8.1: Introduction         228

8.2: Type Selection and Identification            228

8.2.1: Pneumatic Power Supplies       228

8.2.2: Electronic Power Supplies        229

8.3: Sensing Devices   230

8.3.1: Pressure Sensors           230

8.3.1.3: Bellows (Fig. 8-3)       230

8.3.2: Level Sensors    232

8.3.3: Temperature Sensors   237

8.3.4: Flow Sensors     239

8.4: Signal Transmitters          241

8.4.1: Pneumatic Transmitters           241

8.4.2: Electronic Transmitters            241

8.5: Signal Converters 241

8.5.1: Pneumatic-to-electronic (P/I)   242

8.5.2: Electronic-to-pneumatic (I/P)   242

8.5.3: Isolators 242

8.5.4: Electric signal converters         242

8.5.5: Frequency converters   242

8.6: Recorders and Indicators 242

8.6.1: Recorders          242

8.6.2: Indicators          242

8.7: Control Concepts 243

8.7.1: Control Loops    243

8.8: Control Modes and Controllers   245

8.8.1: Two-Position (on-off) Controllers         245

8.8.2: Proportional Control Mode      245

8.9: Control Valves      246

8.9.1: Control-Valve Bodies    247

8.9.2: Control-Valve Actuators           248

8.9.3: Flow Characteristics and Valve Selection         249

8.9.4: Fundamentals of Control Valve Sizing  250

Chapter 9        256

Process Relief Systems           256

9.1: Introduction         256

9.2: Relief Device Design and Requirements:            256

9.2.1: Blocked Discharge        257

9.2.2: Fire Exposure    257

9.2.3: Tube Rupture    257

9.2.4: Control Valve Failure    257

9.2.5: Thermal Expansion       257

9.2.6: Utility Failure    257

9.3: General discussion           258

9.4: Special Relief System Considerations      260

9.4.1: Pumps and storage equipment 260

9.4.2: Low Temperature Flaring         260

9.5: Relieving Devices 260

9.5.1: Conventional Relief Valves       260

9.5.2: Balanced Relief Valves 262

9.5.3: Pilot Operated Relief Valves    262

9.5.4: Resilient Seat Relief Valves      264

9.5.5: Rupture Disk     265

References.     267

-----------------

Corrosion in Oil and Gas industry book contents

Contents

Chapter 1        11

Corrosion Definition and cost 11

1.1 Definition of Corrosion    11

1.1.1 Corrosion Science and Corrosion Engineering  11

1.1.2 Corrosive Environment  12

1.2 Importance of Corrosion   12

Chapter 2        15

Fundamentals of Electricity and Electrochemistry     15

2.1 Atomic Structure  15

2.2 Chemical and Elecrochemical Chemical Reaction            18

2.3 Corrosion as an Electrochemical Process  19

2.4 Corrosion Cell (The Complete Corrosion Circuit)            19

2.5 Basics Electricity  22

2.5.1 Current   22

2.5.2 Electromotive Force (EMF)       22

2.5.3 Resistance          22

2.5.4 Units of Electric Current - Ampere       22

2.5.5 Unit of Electromotive Force - Volt       22

2.5.6 Unit of Resistance - Ohm          23

2.5.7 Ohms Law         23

2.5.8 The Two General Types of Electricity   24

2.5.8.1 What is Alternating Current?  24

2.5.8.2 What is Direct Current?          25

2.5.9 Unit of Resistivity         25

2.6 Thermodynamics   26

2.7 Potential    27

2.8 Reference Electrodes        27

2.8.1 Calomel Reference Electrode    27

2.8.2 Silver-silver chloridereference electrode            28

2.8.3 Copper-copper sulfate reference electrode        29

2.8.4 Comparison of Potential Measured Using different Reference Electrodes.     30

2.9 The Galvanic Series          31

2.10 Nernst Equation  31

2.10.1 EMF Series      33

2.12 Pourbaix diagrams          33

2.13 Kinetics   33

2.13.1 Faraday’s Law 34

2.13.2 E Log I Curves (Evans Diagrams)       35

2.13.3 Area Effects     36

2.14 Electrochemical Cells      37

2.14.1 Galvanic Corrosion      38

2.14.2 Concentration Cell Corrosion  38

2.14.3 Active/Passive Cells     38

2.14.4 Thermogalvanic Corrosion       38

2.15 Passivity  39

Chapter 3        41

Environments  41

3.1 Introduction          41

3.2 Atmospheric          41

3.3 Types of atmosphere         42

3.3.1 Industrial Atmospheres  42

3.3.2 Marine Atmospheres      42

3.3.3 Rural Atmospheres        43

3.3.4 Tropical Atmospheres    43

3.3.5 Indoor Atmospheres      43

3.4 Underground        43

3.4.1 Physical Soil Characteristics      44

3.4.2 Chemical Soil Characteristics    44

3.4.3 Moisture Content           44

3.4.4 Electrical Resistivity      44

3.4.5 Aeration 45

3.4.6 Bacteria  45

3-5 Liquids      45

3.5.1 pH          46

3.5.2 Physical Configuration of The System  47

3.5.3 Chemical Makeup of The Liquid           47

3.5.4 Flow Rate          47

3.5.5 Temperature       47

3.5.6 Pressure  48

3.6 High Temperature 48

3.6.1 High-Temperature Oxidation     48

3.6.2 High-Temperature Reduction    49

Chapter 4        50

Engineering Materials 50

4.1 Introduction          50

4.2 Metals       50

4.3 Metallurgy Concepts         50

4.3.1 Crystal Structure of Metals        50

4.3.2 Alloying 52

4.3.3 Welding 53

4.3.4 Carbon and Low-alloy Steels    53

4.3.5 Cast Iron            54

4.3.6 Copper Alloy     56

4.3.6.1 Characteristics of Copper Alloys        56

4.3.7 Stainless Steel    56

4.3.7.1 Martensitic Stainless steels     57

4.3.7.2 Ferritic Stainless Steel 57

4.3.7.3 Austenitic Stainless steels       57

4.3.7.4 Precipitation-Hardening Stainless Steels        57

4.3.7.6 Super-Austenitic Stainless Steels        58

4.3.8 Nickel Based Alloys      58

4.3.9 Aluminum and Aluminum Based Alloys           59

4.3.10 Titanium           59

4.4 Nonmetals 59

4.4.1 Concrete 60

4.4.1.1 Components of Concrete        60

4.4.1.2 Effects of Environment on Concrete  61

Chapter 5        64

Forms of Corrosion     64

5.1 Introduction          64

5.2 Forms of Corrosion           64

5.2.1 General (uniform) attack corrosion        64

5.2.1.2 Recognition     65

5.2.1.3 Mechanism      65

5.2.1.4 Corrosion rate 65

5.2.1.5 Predictability and Measurement         65

5.2.1.6 General attack corrosion- Performance of Metals and Alloys            66

5.2.1.7 Control of General Attack Corrosion 66

5.2.2 Localized Corrosion       68

5.2.2.2 Types   68

5.2.2.3 Pitting Corrosion         68

5.2.2.4 Crevice Corrosion       74

5.2.2.5 Filiform Corrosion      79

5.2.2.6 Pack Rust Corrosion   81

5.2.3 Galvanic Corrosion (Bi-metallic corrosion)       81

5.2.3.1 Introduction    81

5.2.3.3 Mechanism      83

5.2.3.4 Galvanic Series           83

5.2.3.5 Galvanic Corrosion Rates       85

5.2.3.6 Predicting Galvanic Attack    88

5.2.3.7 Galvanic Attack – Performance of Metals and Alloys           89

5.2.3.8 Control of Galvanic Attack    90

5.2.4 Environmental Cracking            92

5.2.4.1 Introduction    92

5.2.4.2 Recognition of Environmental Cracking        92

5.2.4.3 Controlling Cracking Factors  92

5.2.4.4 Types of Environmental Cracking      92

1- Stress Corrosion Cracking (SCC)   93

2. Hydrogen-Induced Cracking (HIC) and Sulfide Stress Cracking 99

3. Liquid Metal Embrittlement (LME)           104

4. Corrosion Fatigue   107

5.2.5 Flow Assisted Corrosion           114

1- Erosion-Corrosion   114

2- Impingement           116

3- Cavitation   119

5.2.6 Intergranular Corrosion  122

1- General Sensitization          123

2- Weld Decay            124

3- Knife Line Attack  124

5.2.7 Dealloying          126

5.2.8 Fretting Corrosion          129

5.2.9 High – Temperature Corrosion  131

Chapter 6        138

6 Methods of Corrosion Control        138

6.1 Design       138

6.1.1 Material selection           138

6.1.2 Process Parameters         138

A - Temperature:         138

B- Velocity     139

C- Pressure      140

D- Chemistry  140

6.1.3 Construction Parameters            140

6.1.4 Geometry of Drainage   141

6.1.5 Dissimilar Metals           142

6.1.6 Crevices 143

6.1.7 Corrosion Allowance/ Operation Lifetime        144

6.1.8  Maintenance and Inspection     144

6.1.9 (1) Material selection     144

6.1.9.1 Factors That Influence Materials Selection    144

1. Corrosion Resistance in the Environment   145

2. Availability of Design and Test Data         145

3. Mechanical Properties         145

4. Cost 146

5. Availability and Maintainability     146

6. Compatibility with Other System Components      146

7. Life Expectancy of Equipment       146

8. Reliability    146

9. Appearance 146

6.1.9.2 Comparison with Other Corrosion Control Methods 147

6.1.9.2.1 Candidate Materials 147

6.1.9.2.2 Modification of the Environment (Corrosion Inhibitor)      147

6.1.9.2.3 Water Treatment      154

6.1.9.2.4 Cathodic and Anodic Protection     155

Chapter 7        174

Corrosion and Failure Inspection        174

7.1 Introduction          174

7.1.1 Visual     175

7.1.2 Radiographic      175

7.1.3 Ultrasonic           177

7.1.4 Electromagnetic - Eddy Current Inspection Method    179

7.1.5 Liquid Penetrant            180

7.1.6 Magnetic Particle Inspection     181

Chapter 8        183

Corrosion Monitoring 183

8.1 Introduction          183

8.1.1 Specimen Exposure        183

Corrosion Coupons     183

8.1.2 Electrical Resistance (ER)         187

8.1.3 Inductive Resistance Probes      190

8.1.4 Electrochemical Methods          191

Linear Polarization Resistance            191

Electrochemical Impedance Spectroscopy     193

Electrochemical noise 193

8.1.5 Water Chemistry            193

8.1.6 Deposits 193

8.1.7 Suspended Solids          194

8.1.8 Scale       194

8.1.9 Microbiological Fouling 194

8.1.10 Cathodic Protection Monitoring          194

Measurements Methods          194

Annex A         197

Material Properties and Material Testing        197

Structural Forms of Steel        197

Ferrite  197

Cementite        197

Pearlite            197

Austenite         198

Types of steel  199

Carbon Steel: (plain carbon steel)       199

Low Carbon Steel:      199

Medium Carbon Steel:            199

High Carbon Steel:     199

Alloy Steel:     200

Stainless Steels and Nonferrous Materials      200

Steel Alloying Elements         200

Steel Numbering         200

Metal Grain Size.        201

Heat Treating Steels    201

Cooling Rates: Annealing, Normalizing, and Quenching.      202

Quenching       202

Annealing and Normalizing    202

Tempering       203

Material properties      203

Hardness         204

Ductility and Brittleness.        206

Tensile strength           206

Tensile Strength Testing         206

Glossary of Commonly Used Metallurgical Terms     209

Annex B          210

Microbiologically induced corrosion  210

Introduction    210

Microbiological activity and redox potential  210

---------
Oil and Gas Books

1 - Fundamentals of Oil and Gas Processing Book

2- Basics of Gas Field Processing Book

3- Prediction and Inhibition of Gas Hydrates Book

4 - Basics of Corrosion in Oil and Gas Industry Book

 

https://www.amazon.com/Yasser-Kassem/e/B07KXLM5RZ%3Fref=dbs_a_mng_rwt_scns_share

 

Discussion board
And Book texts.

http://www.oilprocessing.net/oil/